The Isabelle Refinement Framework

Peter Lammich

University of Twente

May 2021

- Peter Lammich
 - new assistant professor in FMT group
 - previously in Münster, Munich, Virginia Tech, Manchester
 - research: software verification

- Peter Lammich
 - new assistant professor in FMT group
 - previously in Münster, Munich, Virginia Tech, Manchester
 - research: software verification
- if I'm not working: you'll probably find me rock-climbing

- Peter Lammich
 - new assistant professor in FMT group
 - previously in Münster, Munich, Virginia Tech, Manchester
 - research: software verification
- if I'm not working: you'll probably find me rock-climbing
 - but I also enjoy hiking, biking (mtb, road, trek), racket sports (squash, badminton), ...

The Sloth, HVS 5a, at the Roaches in Peak District

Bull's Crack, HVS 5a, at Heptonstall

Sport Climbing (somewhere in the Peaks)

Mountainbiking (at Lake Garda, after TransAlp)

Hiking in the Alps

• Desirable properties of software

• Desirable properties of software

correct

- Desirable properties of software
 - correct (formally verified)

- Desirable properties of software
 - correct (formally verified)
 - fast

- Desirable properties of software
 - correct (formally verified)
 - fast
 - manageable implementation effort

- Desirable properties of software
 - correct (formally verified)
 - fast
 - manageable implementation and proof effort

- Desirable properties of software
 - correct (formally verified)
 - fast
 - manageable implementation and proof effort
- Choose two!

- Desirable properties of software
 - correct (formally verified)
 - fast
 - manageable implementation and proof effort
- Choose two!
- This talk: towards faster verified algorithms at manageable effort

• What does it need to formally verify an algorithm?

- What does it need to formally verify an algorithm?
 - E.g. maxflow algorithms

• What does it need to formally verify an algorithm?

g: flow network s, t: source, target

gf: residual network

procedure EDMONDS-KARP(g, s, t) $f \leftarrow \lambda(u, v)$. 0 while exists augmenting path in g_f do $p \leftarrow$ shortest augmenting path $f \leftarrow \text{AUGMENT}(g, f, p)$

procedure EDMONDS-KARP(g, s, t) $f \leftarrow \lambda(u, v)$. 0 **while** exists augmenting path in g_f **do** $p \leftarrow$ shortest augmenting path $f \leftarrow \text{AUGMENT}(g, f, p)$

Theorem (Ford-Fulkerson)

For a flow network g and flow f, the following 3 statements are equivalent

- **1** *f* is a maximum flow
- 2 the residual network g_f contains no augmenting path
- 3 |f| is the capacity of a (minimal) cut of g

procedure EDMONDS-KARP(g, s, t) $f \leftarrow \lambda(u, v)$. 0 **while** exists augmenting path in g_f **do** $p \leftarrow$ shortest augmenting path $f \leftarrow \text{AUGMENT}(g, f, p)$

Theorem (Ford-Fulkerson)

For a flow network g and flow f, the following 3 statements are equivalent

- **1** *f* is a maximum flow
- 2 the residual network g_f contains no augmenting path
- 3 |f| is the capacity of a (minimal) cut of g

Proof.

a few pages of definitions and textbook proof (e.g. Cormen).

procedure EDMONDS-KARP(g, s, t) $f \leftarrow \lambda(u, v)$. 0 **while** exists augmenting path in g_f **do** $p \leftarrow$ shortest augmenting path $f \leftarrow \text{AUGMENT}(g, f, p)$

Theorem (Ford-Fulkerson)

For a flow network g and flow f, the following 3 statements are equivalent

- **1** *f* is a maximum flow
- 2 the residual network g_f contains no augmenting path
- 3 |f| is the capacity of a (minimal) cut of g

Proof.

a few pages of definitions and textbook proof (e.g. Cormen). using basic concepts such as numbers, sets, and graphs.

procedure EDMONDS-KARP(g, s, t) $f \leftarrow \lambda(u, v)$. 0 **while** exists augmenting path in g_f **do** $p \leftarrow$ shortest augmenting path $f \leftarrow \text{AUGMENT}(g, f, p)$

Theorem

Let δ_f be the length of a shortest s, t - path in g_f . When augmenting with a shortest path,

- either δ_f decreases
- δ_f remains the same, and the number of edges in g_f that lie on a shortest path decreases.

procedure EDMONDS-KARP(g, s, t) $f \leftarrow \lambda(u, v)$. 0 **while** exists augmenting path in g_f **do** $p \leftarrow$ shortest augmenting path $f \leftarrow \text{AUGMENT}(g, f, p)$

Theorem

Let δ_f be the length of a shortest s, t - path in g_f . When augmenting with a shortest path,

- either δ_f decreases
- δ_f remains the same, and the number of edges in g_f that lie on a shortest path decreases.

Proof.

two more textbook pages.

procedure EDMONDS-KARP(g, s, t) $f \leftarrow \lambda(u, v)$. 0 **while** exists augmenting path in g_f **do** $p \leftarrow$ shortest augmenting path $f \leftarrow \text{AUGMENT}(g, f, p)$

Theorem

Let δ_f be the length of a shortest s, t - path in g_f . When augmenting with a shortest path,

- either δ_f decreases
- δ_f remains the same, and the number of edges in g_f that lie on a shortest path decreases.

Proof.

two more textbook pages.

using lemmas about graphs and shortest paths.

• E.g. graph theory

- E.g. graph theory
- Typically requires powerful (interactive) prover
 - with good library support (to not re-invent too many wheels)

- E.g. graph theory
- Typically requires powerful (interactive) prover
 - with good library support (to not re-invent too many wheels)
- we use Isabelle

- E.g. graph theory
- Typically requires powerful (interactive) prover
 - with good library support (to not re-invent too many wheels)
- we use Isabelle
 - Isabelle/HOL: based on Higher-Order Logic

- E.g. graph theory
- Typically requires powerful (interactive) prover
 - with good library support (to not re-invent too many wheels)
- we use Isabelle
 - Isabelle/HOL: based on Higher-Order Logic
 - powerful automation (e.g. sledgehammer)

- E.g. graph theory
- Typically requires powerful (interactive) prover
 - with good library support (to not re-invent too many wheels)
- we use Isabelle
 - Isabelle/HOL: based on Higher-Order Logic
 - powerful automation (e.g. sledgehammer)
 - large collection of libraries

- E.g. graph theory
- Typically requires powerful (interactive) prover
 - with good library support (to not re-invent too many wheels)
- we use Isabelle
 - Isabelle/HOL: based on Higher-Order Logic
 - powerful automation (e.g. sledgehammer)
 - large collection of libraries
 - Archive of Formal Proofs

- E.g. graph theory
- Typically requires powerful (interactive) prover
 - with good library support (to not re-invent too many wheels)
- we use Isabelle
 - Isabelle/HOL: based on Higher-Order Logic
 - powerful automation (e.g. sledgehammer)
 - large collection of libraries
 - Archive of Formal Proofs
 - mature, production quality IDE, based on JEdit

Implementation

```
procedure EDMONDS-KARP(g, s, t)

f \leftarrow \lambda(u, v). 0

while exists augmenting path in g_f do

p \leftarrow shortest augmenting path

f \leftarrow \text{AUGMENT}(g, f, p)
```

```
int edmonds_karp(int s, int t) {
    int flow = 0;
    vector<int> parent(n);
    int new_flow;
```

```
while (new_flow = bfs(s, t, parent)) {
  flow += new_flow;
  int cur = t;
  while (cur != s) {
    int prev = parent[cur];
    capacity[prev][cur] -= new_flow;
    capacity[cur][prev] += new_flow;
    cur = prev;
  }
}
```

```
return flow;
```

textbook proof typically covers abstract algorithm.
```
 \begin{array}{ccc} \textbf{procedure EDMONDS-KARP}(g, s, t) & & & & & \\ f \leftarrow \lambda(u, v). & 0 & & & & \\ \textbf{while exists augmenting path in } g_f & \textbf{do} & & \\ p \leftarrow & & & & \\ f \leftarrow \text{AUGMENT}(g, f, p) & & & \\ \end{array}
```

```
int edmonds_karp(int s, int t) {
    int flow = 0;
    vector<int> parent(n);
    int new_flow;
```

```
while (new_flow = bfs(s, t, parent)) {
  flow += new_flow;
  int cur = t;
  while (cur != s) {
    int prev = parent[cur];
    capacity[prev][cur] -= new_flow;
    capacity[cur][prev] += new_flow;
    cur = prev;
    }
}
```

```
return flow;
```

textbook proof typically covers abstract algorithm. but this is quite far from implementation. Still missing:

textbook proof typically covers abstract algorithm.

but this is quite far from implementation. Still missing:

optimizations: e.g., work on residual network instead of flow

int edmonds_karp(int s, int t) {

int flow = 0; vector<int> parent(n); int new_flow:

```
int edmonds_karp(int s, int t) {
    int flow = 0;
    vector<int> parent(n);
    int new_flow;
    while cnew_flow = bfs(s, t, parent)) {
```

```
flow += new_flow;
int cur = t;
while (cur != s) {
    int prev = parent[cur];
    capacity[prev][cur] -= new_flow;
    capacity[cur][prev] += new_flow;
    cur = prev;
}
```

```
return flow;
```

textbook proof typically covers abstract algorithm.

but this is quite far from implementation. Still missing:

- optimizations: e.g., work on residual network instead of flow
- algorithm to find shortest augmenting path (BFS)

```
int edmonds_karp(int s, int t) {
    int flow = 0;
    vector<int> parent(n);
    int new_flow;
```

```
while (new_flow = bfs(s, t, parent)) {
  flow += new_flow;
  int cur = t;
  while (cur != s) {
    int prev = parent[cur];
    capacity[prev][cur] -= new_flow;
    capacity[cur][prev] += new_flow;
    cur = prev;
  }
}
```

return flow;

textbook proof typically covers abstract algorithm.

but this is quite far from implementation. Still missing:

- optimizations: e.g., work on residual network instead of flow
- algorithm to find shortest augmenting path (BFS)
- efficient data structures: adjacency lists, weight matrix, FIFO-queue,

• • •

```
int edmonds_karp(int s, int t) {
    int flow = 0;
    vector<int> parent(n);
    int new_flow;
```

```
while (new_flow = bfs(s, t, parent)) {
  flow += new_flow;
  int cur = t;
  while (cur != s) {
    int prev = parent[cur];
    capacity[prev][cur] -= new_flow;
    capacity[cur][prev] += new_flow;
    cur = prev;
  }
}
```

return flow;

textbook proof typically covers abstract algorithm.

but this is quite far from implementation. Still missing:

- optimizations: e.g., work on residual network instead of flow
- algorithm to find shortest augmenting path (BFS)
- efficient data structures: adjacency lists, weight matrix, FIFO-queue,

```
• • •
```

code extraction

• A manageable proof needs modularization:

- A manageable proof needs modularization:
 - Prove separately, then assemble

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths
 - insert implementation into EDMONDSKARP

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths
 - insert implementation into EDMONDSKARP
- Data refinement

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths
 - insert implementation into EDMONDSKARP
- Data refinement
 - BFS implementation uses adjacency lists. EDMONDSKARP used abstract graphs.

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths
 - insert implementation into EDMONDSKARP
- Data refinement
 - BFS implementation uses adjacency lists. EDMONDSKARP used abstract graphs.
 - refinement relations between
 - nodes and int64s (node₆₄);
 - adjacency lists and graphs (adjl);
 - arrays and paths (array).

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths
 - insert implementation into EDMONDSKARP
- Data refinement
 - BFS implementation uses adjacency lists. EDMONDSKARP used abstract graphs.
 - refinement relations between
 - nodes and int64s (node₆₄);
 - adjacency lists and graphs (adjl);
 - arrays and paths (array).

 $\begin{array}{l} (s_{\dagger},s) \in \mathsf{node}_{64}; \, (t_{\dagger},t) \in \mathsf{node}_{64}; \, (g_{\dagger},g) \in \mathsf{adjl} \\ \Longrightarrow \, (\mathsf{bfs} \; s_{\dagger} \; t_{\dagger} \; g_{\dagger}, \, \mathsf{find_shortest} \; s \; t \; g) \in \mathsf{array} \end{array}$

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths
 - insert implementation into EDMONDSKARP
- Data refinement
 - BFS implementation uses adjacency lists. EDMONDSKARP used abstract graphs.
 - refinement relations between
 - nodes and int64s (node₆₄);
 - adjacency lists and graphs (adjl);
 - arrays and paths (array).

 $\begin{array}{l} (s_{\dagger},s) \in \mathsf{node}_{64}; \, (t_{\dagger},t) \in \mathsf{node}_{64}; \, (g_{\dagger},g) \in \mathsf{adjl} \\ \Longrightarrow \, (\mathsf{bfs} \; s_{\dagger} \; t_{\dagger} \; g_{\dagger}, \, \mathsf{find_shortest} \; s \; t \; g) \in \mathsf{array} \end{array}$

Shortcut notation: (bfs,find_shortest) \in node₆₄ \rightarrow node₆₄ \rightarrow adjl \rightarrow array

- A manageable proof needs modularization:
 - Prove separately, then assemble
- Formal framework: Refinement
 - e.g. implement BFS, and prove it finds shortest paths
 - insert implementation into EDMONDSKARP
- Data refinement
 - BFS implementation uses adjacency lists. EDMONDSKARP used abstract graphs.
 - refinement relations between
 - nodes and int64s (node₆₄);
 - adjacency lists and graphs (adjl);
 - arrays and paths (array).

 $\begin{array}{l} (s_{\dagger},s) \in \mathsf{node}_{64}; \ (t_{\dagger},t) \in \mathsf{node}_{64}; \ (g_{\dagger},g) \in \mathsf{adjl} \\ \Longrightarrow \ (\mathsf{bfs} \ s_{\dagger} \ t_{\dagger} \ g_{\dagger}, \ \mathsf{find_shortest} \ s \ t \ g) \in \mathsf{array} \end{array}$

Shortcut notation: (bfs,find_shortest) \in node₆₄ \rightarrow node₆₄ \rightarrow adjl \rightarrow array

• Implementations used for different parts must fit together!

shortest-path-spec

shortest-path-spec

bfs-1

```
shortest-path-spec

"textbook" proof

bfs-1
```

```
shortest-path-spec

\downarrow "textbook" proof

bfs-1

\downarrow graph \rightarrow adj.-list

queue \rightarrow ring-buffer

bfs
```

```
shortest-path-spec

"textbook" proof

bfs-1

graph \rightarrow adj.-list

queue \rightarrow ring-buffer

bfs
```


maxflow-spec


```
shortest-path-spec

"textbook" proof

bfs-1

graph \rightarrow adj.-list

queue \rightarrow ring-buffer

bfs
```



```
maxflow-spec

"textbook" proof

EdmondsKarp-1

EdmondsKarp-2
```

```
shortest-path-spec 
 \downarrow "textbook" proof
 bfs-1
 \downarrow graph \rightarrow adj.-list
 queue \rightarrow ring-buffer
 bfs
```

```
maxflow-spec

"textbook" proof

EdmondsKarp-1

modify residual graph

EdmondsKarp-2
```



```
maxflow-spec
          "textbook" proof
EdmondsKarp-1
          modify residual graph
EdmondsKarp-2
          node \rightarrow int
          graph \rightarrow adj.-list
          capacity, flow \rightarrow array
          shortest-path \rightarrow bfs
 EdmondsKarp
```


• Formalization of Refinement in Isabelle/HOL

- Formalization of Refinement in Isabelle/HOL
- Tools + Automation

- Formalization of Refinement in Isabelle/HOL
- Tools + Automation
- Libraries

- Formalization of Refinement in Isabelle/HOL
- Tools + Automation
- Libraries
- Down to Ocaml/Haskell/Scala/SML and LLVM
- Nondetermistic programs shallowly embedded in HOL
 - As monad

```
\alpha \mathsf{M} = \mathsf{FAIL} \mid \mathsf{SPEC} \ (\alpha \Rightarrow \mathsf{bool})
```

- Nondetermistic programs shallowly embedded in HOL
 - As monad

```
\alpha \mathsf{M} = \mathsf{FAIL} \mid \mathsf{SPEC} \ (\alpha \Rightarrow \mathsf{bool})
```

return, bind

• + if-then-else, recursion (via flat ccpo)

- Nondetermistic programs shallowly embedded in HOL
 - As monad

```
\alpha M = FAIL \mid SPEC \ (\alpha \Rightarrow bool)
```

- + if-then-else, recursion (via flat ccpo)
- + derived constructs (while, foreach, ...)

- Nondetermistic programs shallowly embedded in HOL
 - As monad

```
\alpha \mathsf{M} = \mathsf{FAIL} \mid \mathsf{SPEC} \ (\alpha \Rightarrow \mathsf{bool})
```

- + if-then-else, recursion (via flat ccpo)
- + derived constructs (while, foreach, ...)
- = usable programming language

- Nondetermistic programs shallowly embedded in HOL
 - As monad

```
\alpha \mathsf{M} = \mathsf{FAIL} \mid \mathsf{SPEC} \ (\alpha \Rightarrow \mathsf{bool})
```

- + if-then-else, recursion (via flat ccpo)
- + derived constructs (while, foreach, ...)
- ullet = usable programming language
- Refinement Calculus for Program and Data Refinement

- Nondetermistic programs shallowly embedded in HOL
 - As monad

```
\alpha M = FAIL \mid SPEC \ (\alpha \Rightarrow bool)
```

- + if-then-else, recursion (via flat ccpo)
- + derived constructs (while, foreach, ...)
- = usable programming language
- Refinement Calculus for Program and Data Refinement
- Automation: VCG, semi-automatic data refinement

Imperative-HOL Backend

- imperative + functional language
- code generation to OcamI/Haskell/Scala/SML
- automatic refinement of functional to imperative DS
 - if used linearly

Isabelle-LLVM Backend

- only imperative + bounded integers
- automatic placement of destructors
- semi-automatic in-bound proofs (eg for int \rightarrow int64)

Refinement with Time

- Prove correctness and complexity
- Resource currencies to structure complexity proofs along refinement
- Down to Imperative-HOL / LLVM

Libraries

- Functional and Imperative data structures
 - readily usable for your developments
- Functional:
 - hashtable, red-black-trees, tries, Finger-Trees, (Skew) binomial queues,
- Imperative:
 - dynarray, heap, matrix, linked-list, hashtable, bit-vector, union-find, ROBDDs, B-Trees, ...

- CAVA model checker
 - fully fledged LTL model checker
 - developed independently by 3 groups
 - newer development: MUNTA for timed automata

- CAVA model checker
 - fully fledged LTL model checker
 - developed independently by 3 groups
 - newer development: MUNTA for timed automata
- Maxflow: Edmonds-Karp and Push-Relabel
 - textbook-level abstract correctness proof
 - efficient implementation

- CAVA model checker
 - fully fledged LTL model checker
 - developed independently by 3 groups
 - newer development: MUNTA for timed automata
- Maxflow: Edmonds-Karp and Push-Relabel
 - textbook-level abstract correctness proof
 - efficient implementation
- GRAT: SAT-Solver verification tool
 - faster than unverified state-of-the-art tool drat-trim

- CAVA model checker
 - fully fledged LTL model checker
 - developed independently by 3 groups
 - newer development: MUNTA for timed automata
- Maxflow: Edmonds-Karp and Push-Relabel
 - textbook-level abstract correctness proof
 - efficient implementation
- GRAT: SAT-Solver verification tool
 - faster than unverified state-of-the-art tool drat-trim
- Introsort + Pdqsort
 - verified correctness and complexity
 - on par with C++ impls from GNU libstdc++ and Boost

Future Work

- Concurrency
- Consolidate frameworks and tools
- Interesting algorithms to verify

Conclusions

Isabelle Refinement Framework

powerful interactive theorem prover

- + stepwise refinement
- + libraries for standard DS
- + lot's of automation
- + efficient backend (LLVM)
- = verified and efficient algorithms, at manageable effort