
Refinement of Parallel Algorithms down to LLVM1

Peter Lammich �2

University of Twente, Netherlands3

Abstract4

We present a stepwise refinement approach to develop verified parallel algorithms, down to efficient5

LLVM code. The resulting algorithms’ performance is competitive with their counterparts imple-6

mented in C/C++. Our approach is backwards compatible with the Isabelle Refinement Framework,7

such that existing sequential formalizations can easily be adapted or re-used. As case study, we8

verify a parallel quicksort algorithm, and show that it performs on par with its C++ implementation,9

and is competitive to state-of-the-art parallel sorting algorithms.10

2012 ACM Subject Classification Software and its engineering → Formal software verification;11

Theory of computation → Semantics and reasoning; Computing methodologies → Parallel algorithms12

Keywords and phrases Isabelle,Concurrent Separation Logic,Parallel Sorting,LLVM13

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.1214

Supplementary Material Software (Isabelle Formalization): https://www21.in.tum.de/~lammich/15

isabelle_llvm_par/16

1 Introduction17

We present a stepwise refinement approach to develop verified and efficient parallel algorithms.18

Our method can verify total correctness down to LLVM intermediate code. The resulting19

verified implementations are competitive with state-of-the-art unverified implementations.20

Our approach is backwards compatible to the Isabelle Refinement Framework (IRF), a21

powerful tool to verify efficient sequential software, such as model checkers [10, 7, 38], SAT22

solvers [24, 25, 11], or graph algorithms [22, 28, 29]. This paper adds parallel execution to23

the IRF’s toolbox, without invalidating the existing formalizations, which can now be used24

as sequential building blocks for parallel algorithms, or be modified to add parallelization.25

As a case study, we verify total correctness of a parallel quicksort algorithm, re-using26

an existing verification of state-of-the-art sequential sorting algorithms [27]. Our verified27

parallel sorting algorithm is competitive to state-of-the-art parallel sorting algorithms.28

1.1 Overview29

This paper is based on the Isabelle Refinement Framework, a continuing effort to verify efficient30

implementations of complex algorithms, using stepwise refinement techniques. Figure 131

displays the components of the Isabelle Refinement Framework.32

The back end layer handles the translation from Isabelle/HOL to the actual target33

language. The instructions of the target language are shallowly embedded into Isabelle/HOL,34

using a state-error (SE) monad. An instruction with undefined behaviour, or behaviour35

outside our supported fragment, raises an error. The state of the monad is the memory,36

represented via a memory model. The code generator translates the instructions to actual37

code. These components form the trusted code base, while all the remaining components38

of the Isabelle Refinement Framework generate proofs. In the back-end, the preprocessor39

transforms expressions to the syntactically restricted format required by the code generator,40

proving semantic equality of the original and transformed expression. While there exist back41

ends for purely functional code [30, 21], and sequential imperative code [23, 26], this paper42

describes a back end for parallel imperative LLVM code (Section 2).43

© Peter Lammich;
licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).
Editors: June Andronick and Leonardo de Moura; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.lammich@utwente.nl
https://orcid.org/0000-0003-3576-0504
https://doi.org/10.4230/LIPIcs.ITP.2022.12
https://www21.in.tum.de/~lammich/isabelle_llvm_par/
https://www21.in.tum.de/~lammich/isabelle_llvm_par/
https://www21.in.tum.de/~lammich/isabelle_llvm_par/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Refinement of Parallel Algorithms down to LLVM

Algorithms and Data Structures

NE-Monad Low-Level Algorithms
and Data StructuresSepref

Program Logic and VCG

Back
End

Trusted Code Base

Code GeneratorInstructionsPreprocessor

Memory Model

SE-Monad

Figure 1 Components of the Isabelle Refinement Framework, with focus on the back end.

On top of the back-end, a program logic is used to prove programs correct. It uses44

separation logic, and provides automation like a verification condition generator (VCG). In45

Section 3, we describe our formalization of concurrent separation logic [33], and our VCG.46

At the level of the program logic and VCG, our framework can already be used to47

verify simple low-level algorithms and data structures, like dynamic arrays and linked lists.48

More complex developments typically use a stepwise refinement approach, starting at purely49

functional programs modelled in a nondeterminism-error (NE) monad [30]. A semi-automatic50

refinement procedure (Sepref [23, 26]) translates from the purely functional code to imperative51

code, refining abstract functional data types to concrete imperative ones. In Section 4, we52

describe our extensions to support refinement to parallel executions, and a fine-grained53

tracking of pointer equalities, required to parallelize computations that work on disjoint54

parts of the same array.55

Using our approach, complex algorithms and data structures can be developed and refined56

to optimized efficient code. The stepwise refinement ensures a separation of concerns between57

high-level algorithmic ideas and low-level optimizations. We have used this approach to58

verify a wide range of practically efficient algorithms [10, 7, 38, 24, 25, 11, 22, 28, 29, 27].59

In Section 5, we use our techniques to verify a parallel sorting algorithm, with competitive60

performance wrt. unverified state-of-the-art algorithms.61

Section 6 concludes the paper and discusses related and future work.62

2 A Back End for LLVM with Parallel Execution63

We formalize a semantics for parallel execution, shallowly embedded into Isabelle/HOL. As64

for the existing sequential back ends [23, 26], the shallow embedding is key to the flexibility65

and feasibility of the approach. The main idea is to make an execution report the memory66

that it accesses, and use this information to raise an error when joining executions that would67

have exhibited a data race. We use this to model an instruction that calls two functions in68

parallel, and waits until both have returned.69

Peter Lammich 12:3

2.1 State-Nondeterminism-Error Monad with Access Reports70

We define the underlying monad in two steps. We start with a nondeterminism-error monad,71

and then lift it to a state monad and add access reports. Defining a nondeterminism-error72

monad is straightforward in Isabelle/HOL:73

74
′a neM ≡ spec (′a ⇒ bool) | fail75

return x ≡ spec (λr. r=x)76

bind fail f ≡ fail77

bind (spec P) f ≡ if ∃x. P x ∧ f x = fail then fail78

else spec (λr. ∃x Q. P x ∧ f x = spec Q ∧ Q r)79
80

A program either fails, or yields a possible set of results (spec P), described by its charac-81

teristic function P. The return operation yields exactly one result, and bind combines all82

possible results, failing if there is a possibility to fail.83

Now assume that we have a state (memory) type ′µ, and an access report type ′ρ, which84

forms a monoid (0,+). With this, we define our state-nondeterminism-error monad with85

access reports, just called M for brevity:86

87
′x M ≡ ′µ ⇒ (′x × ′ρ × ′µ) neM88

returnM x µ ≡ returnne (x,0,µ)89

bindM m f µ ≡ (x1,r1,µ) ← m µ; (x2,r2,µ) ← f x1 µ; returnne (x2,r1+r2,µ)90
91

Here, return does not change the state, and reports no accesses (0), and bind sequentially92

composes the executions, threading through the state µ, and adding up the access reports r193

and r2.94

Typically, the access report will contain read and written addresses, such that data races95

can be detected. Moreover, if parallel executions can allocate memory, we must detect those96

executions where the memory manager allocated the same block in both parallel strands.97

As we assume a thread safe memory manager, those infeasible executions can safely be98

ignored. Let norace :: ′ρ ⇒ ′ρ ⇒ bool and feasible :: ′ρ ⇒ ′ρ ⇒ bool be symmetric predicates,99

and let combine :: (′ρ × ′µ) ⇒ (′ρ × ′µ) ⇒ (′ρ × ′µ) be a commutative operator to compose100

two pairs of access reports and states. Then, we define a parallel composition operator for M:101

102

(m1 || m2) µ ≡103

(x1,r1,µ1) ← m1 µ; (x2,r2,µ2) ← m2 µ; — execute both strands104

assume feasible ρ1 ρ2; — ignore infeasible combinations105

assert norace ρ1 ρ2; — fail on data race106

returnne ((x1,x2), combine (ρ1,µ1) (ρ2,µ2)) — combine results107

108

assume P ≡ if P then return () else spec (λ . False)109

assert P ≡ if P then return () else fail110
111

Here, we use assume to ignore infeasible executions, and assert to fail on data races.112

Note that, if one parallel strand fails, and the other parallel strand has no possible results113

spec (λ . False), the behaviour of the parallel composition is not clear. For this reason,114

we fix an invariant invarM :: (′µ ⇒ (′x × ′ρ × ′µ) neM) ⇒ bool, which implies that every115

non-failing execution has at least one possible result. We define the actual type M as the116

subtype satisfying invarM . Thus, we have to prove that every combinator and instruction117

of our semantics preserves the invariant, which is an important sanity check. As additional118

sanity check, we prove symmetry of parallel composition:119

ITP 2022

12:4 Refinement of Parallel Algorithms down to LLVM

120

m1 || m2 = mswap (m2 || m1) where mswap m ≡ (x1,x2)←m; return (x2,x1)121
122

2.2 Memory Model123

Our memory model supports blocks of values, where values can be integers, structures, or124

pointers into a block:125

126

datatype addr ≡ ADDR (bidx: nat) (idx: nat)127

datatype ptr ≡ PTR NULL | PTR ADDR (the addr: addr)128

datatype val ≡ LL INT lint | LL STRUCT val list | LL PTR ptr129

130

datatype block ≡ FRESH | FREED | is alloc: ALLOC (vals: val list)131

typedef memory ≡ { µ :: nat ⇒ block. finite {b. µ b 6= FRESH} }132
133

A block is either fresh, freed, or allocated, and a memory is a mapping from block indexes134

to blocks, such that only finitely many blocks are not fresh. Every block’s state transitions135

from fresh to allocated to freed. This avoids ever reusing the same block, and thus allows136

us to semantically detect use after free errors. Every program execution can only allocate137

finitely many blocks, such that we will never run out of fresh blocks1. An allocated block138

contains an array of values, modelled as a list. Thus, an address consists of a block number,139

and an index into the array.140

To access and modify memory, we define the functions valid, get, and put:141

142

valid µ (ADDR b i) ≡ is alloc (µ b) ∧ i<|vals (µ b)|143

get µ (ADDR b i) ≡ vals (µ b) ! i144

put µ (ADDR b i) x ≡ µ(b := ALLOC ((vals (µ b))[i:=x]))145
146

where |xs| is the length of list xs, xs!i returns the ith element of list xs, and xs[i:=x] replaces147

the ith element of xs by x.148

Note that our LLVM semantics does not support conversion of pointers to integers, nor149

comparison or difference of pointers to different blocks. This way, a program cannot see the150

internal representation of a pointer, and we can choose a simple abstract representation,151

while being faithful wrt. any actual memory manager implementation.152

2.3 Access Reports153

We now fix the state of the M-monad to be memory, and the access reports to be sets of154

read and written addresses, as well as sets of allocated and freed blocks:155

156

acc ≡ (r :: addr set; w :: addr set; a :: nat set; f :: nat set)157

0 ≡ ({},{},{},{})158

(r1,w1,a1,f1) + (r2,w2,a2,f2) ≡ (r1∪ r2, w1∪ w2, a1∪ a2, f1∪ f2)159
160

Two parallel executions are feasible if they did not allocate the same block, and they161

have a data race if one strand accesses addresses or blocks modified by the other strand:162

163

feasible (r1,w1,a1,f1) (r2,w2,a2,f2) ≡ a1 ∩ a2 = {}164

165

1 If the actual system does run out of memory, we will terminate the program in a defined way.

Peter Lammich 12:5

norace (r1,w1,a1,f1) (r2,w2,a2,f2) ≡166

let m1 = w1 ∪ { ADDR b i. b ∈ a1 ∪ f1 } in167

let m2 = w2 ∪ { ADDR b i. b ∈ a2 ∪ f2 } in168

(r1 ∪ m1) ∩ m2 = {} ∧ m1 ∩ (r2 ∪ m2) = {}169
170

The invariant for M states that blocks transition only from fresh to allocated to free, allocated171

blocks never change their size, and the access report matches the observable state change172

(consistent). It also states, that for each finite set of blocks B, there is an execution that173

does not allocate blocks from B. The latter is required to show that we always find feasible174

parallel executions:175

176

invarM c ≡ ∀µ P. c µ = spec P =⇒177

(∀x ρ µ′. P (x,ρ,µ′) =⇒ consistent µ ρ µ′)178

∧ (∀B. finite B =⇒ (∃x ρ µ′. P (x,ρ,µ′) ∧ ρ.a ∩ B = {}))179
180

The combine function joins the access reports and memories, preferring allocated over fresh,181

and freed over allocated memory. When joining two allocated blocks, the written addresses182

from the access report are used to join the blocks. We skip the rather technical definition of183

combine, and just state the relevant properties: Let ρ1=(r1,w1,a1,f1) and ρ2=(r2,w2,a2,f2) be184

feasible and race free access reports, and µ1, µ2 be memories that have evolved from a common185

memory µ, consistently with the access reports ρ1, ρ2. Let (ρ′,µ′) = combine (ρ1,µ1) (ρ2,µ2),186

and addr a valid address in µ′. Then187

188

(1) µ′ b = FRESH ←→ µ b = FRESH ∧ b /∈ a1 ∪ a2189

(2) is alloc (µ′ b) ←→ (is alloc (µ b) ∨ b ∈ a1 ∪ a2) ∧ b /∈ f1 ∪ f2190

(3) µ′ b = FREED ←→ µ b = FREED ∨ b ∈ f1 ∪ f2191

192

(4) a ∈ w1 ∨ b ∈ a1 =⇒ get addr µ′ a = get addr µ1 a193

(5) a ∈ w2 ∨ b ∈ a2 =⇒ get addr µ′ a = get addr µ2 a194

(6) a /∈ w1∪w2 ∨ b /∈ a1∪a2 =⇒ get addr µ′ a = get addr µ a195
196

The properties (1)–(3) define the state of blocks in the combined memory: a fresh block in197

µ′ was fresh already in µ, and has not been allocated (1); an allocated block was already198

allocated or has been allocated, but has not been freed (2); and a freed block was already199

freed, or has been freed (3). The properties (4)–(6) define the content: addresses written or200

allocated in the first or second execution get their content from µ1 (4) or µ2 (5) respectively.201

Addresses not written or allocated at all keep their original content (6).202

2.4 LLVM Instructions203

Based on the M-monad, we define shallowly embedded LLVM instructions. For most204

instructions, this is analogous to the sequential case [26]. The exceptions are memory alloca-205

tion, which nondeterministically allocates some available block (the original formalization206

deterministically counted up the block indexes), and an instruction for parallel function call:207

208

l lc par f g a b ≡ f a || g b209
210

The code generator only accepts this, if f and g are constants (i.e., function names). It then211

generates some type-casting boilerplate, and a call to an external parallel function, which we212

implement using the Threading Building Blocks [36] library:213

214

void parallel(void (∗f1)(void∗), void (∗f2)(void∗), void ∗x1, void ∗x2) {215

ITP 2022

12:6 Refinement of Parallel Algorithms down to LLVM

tbb::parallel invoke([=]{f1(x1);}, [=]{f2(x2);}); }216
217

I.e., the two functions f1(x1) and f2(x2) are called in parallel. The generated boilerplate code218

sets up x1 and x2 to point to both, the actual arguments and space for the results.219

3 Parallel Separation Logic220

In the previous section, we have defined a shallow embedding of LLVM programs into221

Isabelle/HOL. We now describe how to reason about these programs, using separation logic.222

3.1 Separation Algebra223

In order to reason about memory with separation logic, we define an abstraction function224

from the memory into a separation algebra [8]. Separation algebras formalize the intuition of225

combining disjoint parts of memory. They come with a zero (0) that describes the empty226

part, a disjointness predicate a#b describing that the parts a and b do not overlap, and a227

disjoint union a+ b that combines two disjoint parts. For the exact definition of a separation228

algebra, we refer to [8, 20]. We note that separation algebras naturally extend over functions229

and pairs, in a pointwise manner.230

I Example 1. (Trivial Separation Algebra) The type α option = None | Some α forms a231

separation algebra with:232

233

0 ≡ None a # b ≡ a=0 ∨ b=0 a + 0 ≡ a 0 + b ≡ b234
235

Intuitively, this separation algebra does not allow for combination of contents, except if one236

side is zero. While it is not very useful on its own, the trivial separation algebra is a useful237

building block for more complex separation algebras.238

For our memory model, we define the following abstraction function:239

240

α :: memory → (addr → val option) × (nat → nat option)241

α µ ≡ (αm µ, αb µ)242

243

αm µ addr ≡ if valid µ addr then Some (get µ addr) else 0244

αb µ b ≡ if is alloc (µ b) then Some (|vals (µ b)|) else 0245
246

An abstract memory α µ consists of two parts: αm µ is a map from addresses to the values247

stored there. It is used to reason about load and store operations. αb µ is a map from248

block indexes to the sizes of the corresponding blocks. It is used to ensure that one owns all249

addresses of a block when freeing it.250

We continue to define a separation logic: assertions are predicates over separation algebra251

elements. The basic connectives are defined as follows:252

253

false a ≡ False true a ≡ True � a ≡ a=0254

(P∗Q) a ≡ ∃ a1 a2. a1 # a2 ∧ a = a1 + a2 ∧ P a1 ∧ Q a2255
256

That is, the assertion false never holds and the assertion true holds for all abstract memories.257

The empty assertion � holds for the zero memory, and the separating conjunction P∗Q holds258

if the memory can be split into two disjoint parts, such that P holds for one, and Q holds for259

the other part. The lifting assertion ↑φ holds iff the Boolean value φ is true:260

261

↑φ ≡ if φ then � else false262
263

Peter Lammich 12:7

It is used to lift plain logical statements into separation logic assertions owning no memory.264

When clear from the context, we omit the ↑-symbol, and just mix plain statements with265

separation logic assertions.266

3.2 Weakest Preconditions and Hoare Triples267

We define a weakest precondition predicate directly via the semantics:268
269

wp m Q µ ≡ case m µ of spec Q′⇒ ∀x ρ µ′. Q′ (x,ρ,µ′) =⇒ Q x ρ µ′ | fail ⇒ False270
271

That is, wp m Q µ holds, iff program m run on memory µ does not fail, and all possible272

results (return value x, access report ρ, new memory µ′) satisfy the postcondition Q.273

To set up a verification condition generator based on separation logic, we standardize the274

postcondition: the reported memory accesses must be disjoint from some abstract memory275

amf, called the frame. We define the weakest precondition with frame:276
277

wpf amf c Q µ ≡ wp c (λx ρ µ′. Q x µ′ ∧ disjoint ρ amf) µ278

279

disjoint (r,w,a,f) (m,b) ≡ (∀addr. m addr 6= 0 =⇒ addr /∈ r ∪ w ∧ addr.bidx /∈ f)280

∧ (∀i. b i 6= 0 =⇒ i /∈ f)281
282

that is, when executed on memory µ, the program c does not fail, every return value x and283

new memory µ′ satisfies Q, and no memory described by the frame amf is accessed.284

Equipped with a weakest precondition with access restrictions, we define a Hoare-triple:285
286

ABS amf P µ ≡ ∃am. am # amf ∧ α µ = am+amf ∧ P am287

288

ht P c Q ≡ ∀µ amf. ABS amf P µ =⇒ wpf amf c (λx µ′. ABS amf (Q x) µ′) µ289
290

The predicate ABS amf P µ specifies that the abstract memory α µ can be split into a291

part am and the given frame amf, such that am satisfies the precondition P . A Hoare-292

triple ht P c Q specifies that for all memories and frames for which the precondition holds293

(ABS amf P µ), the program will succeed, not using any memory of the frame, and every294

result will satisfy the postcondition wrt. the original frame (ABS amf (Q x) µ′).295

3.3 Verification Condition Generator296

The verification condition generator is implemented as a proof tactic that works on subgoals297

of the form:298
299

ABS amf P µ ∧ . . . =⇒ wpf amf c Q µ300
301

The tactic is guided by the syntax of the command c. Basic monad combinators are broken302

down using the following rules:303
304

Q r µ =⇒ wpf amf (return r) Q µ305

wpf amf m (λx. wpf amf (f x) Q) µ =⇒ wpf amf ({x ← m; f x}) Q µ306
307

For other instructions and user defined functions, the VCG expects a Hoare-triple to be308

already proved. It then uses the following rule:309
310

ht P c Q ∧ ABS amf P′ µ — match Hoare triple and current state311

∧ P′ ` P∗F — infer frame312

∧ (
∧
r µ. ABS amf (Q r ∗ F) µ =⇒ Q′ r µ) — continue with postcondition313

=⇒ wpf amf c Q′ µ314
315

ITP 2022

12:8 Refinement of Parallel Algorithms down to LLVM

To process a command c, the first assumption is instantiated with the Hoare-triple for c, and316

the second assumption with the assertion P′ for the current state. Then, a simple syntactic317

heuristics infers a frame F and proves that the current assertion P′ entails the required318

precondition P and the frame. Finally, verification condition generation continues with the319

postcondition Q and the frame as current assertion.320

3.4 Hoare-Triples for Instructions321

To use the VCG to verify LLVM programs, we have to prove Hoare triples for the LLVM322

instructions. For parallel calls, we prove the well-known disjoint concurrency rule [33]:323

324

ht P1 c1 Q1 ∧ ht P2 c2 Q2 =⇒ ht (P1 ∗ P2) (par c1 c2) (λ(r1,r2). Q1 r1 ∗ Q2 r2)325
326

That is, commands with disjoint preconditions can be executed in parallel.327

For memory operations, we prove:328

329

|= {n 6=0} l l malloc TYPE(α) n {λp. range {0..<n} (λ . init) p ∗ b tag n p}330

|= {range {0..<n} xs p ∗ b tag n p} l l free p {λ . �}331

|= {pto x p} l l load p {λr. r=x ∗ pto x p}332

|= {pto y p} l l store x p {λ . pto x p}333
334

Here b tag n p asserts that p points to the beginning of a block of size n, and range I f p335

describes that for all i ∈ I, p+ i points to value f i. Intuitively, l l malloc creates a block of336

size n, initialized with the default init value, and a tag. If one possesses both, the whole block337

and the tag, it can be deallocated by free. The rules for load and store are straightforward,338

where pto x p describes that p points to value x.339

4 Refinement for Parallel Programs340

At this point, we have described a separation logic framework for parallel programs in341

LLVM. It is largely backwards compatible with the framework for sequential programs342

described in [26], such that we could easily port the algorithms formalized there to our343

new framework. The next step towards verifying complex programs is to set up a stepwise344

refinement framework. In this section we describe the refinement infrastructure of the Isabelle345

Refinement Framework, focusing on our changes to support parallel algorithms.346

4.1 Abstract Programs347

Abstract programs are shallowly embedded into the nondeterminism error monad ′a neM (cf.348

Section 2.1). They are purely functional, not modifying memory, or differentiating between349

sequential and parallel execution. We define a refinement ordering on neM:350

351

spec P ≤ spec Q ≡ ∀x. P x =⇒ Q x fail 6≤ spec Q m ≤ fail352
353

Intuitively, m1 ≤ m2 means that m1 returns fewer possible results than m2, and may only354

fail if m2 may fail. Note that ≤ is a complete lattice, with top element fail.355

We use refinement and assertions to specify that a program m satisfies a specification356

with precondition P and postcondition Q:357

358

m ≤ assert P; spec x. Q x359
360

Peter Lammich 12:9

If the precondition is false, the right hand side is fail, and the statement trivially holds.361

Otherwise, m cannot fail, and every possible result x of m must satisfy Q.362

For a detailed description on using the ne-monad for stepwise refinement based program363

verification, we refer the reader to [30].364

4.2 The Sepref Tool365

The Sepref tool [23, 26] symbolically executes an abstract program in the ne-monad, keeping366

track of refinements for every abstract variable to a concrete representation, which may367

use pointers to dynamically allocated memory. During the symbolic execution, the tool368

synthesizes an imperative Isabelle-LLVM program, together with a refinement proof. The369

synthesis is automatic, but requires annotations to the abstract program.370

The main concept of the Sepref tool is refinement between an abstract program c in the371

ne-monad, and a concrete program c† in the M monad, as expressed by the hnr-predicate:372

373

hnr Γ c† Γ′ R CP c ≡374

c 6= fail =⇒ ht Γ c† (λx†. ∃x. Γ′ ∗ R x x† ∗ ↑(return x ≤ c ∧ CP x†))375
376

That is, either the abstract program c fails, or for a memory described by assertion Γ, the377

LLVM program c† succeeds with x†, such that the new memory is described by Γ′ ∗ R x x†,378

for a possible result x of the abstract program c. Moreover, the predicate CP holds for the379

concrete result. Note that hnr trivially holds for a failing abstract program. This makes380

sense, as we prove that the abstract program does not fail anyway. Moreover it allows us to381

assume that assertions actually hold during the refinement proof:382

383

(φ =⇒ hnr Γ c† Γ′ R CP c) =⇒ hnr Γ c† Γ′ R CP (assert φ; c)384
385

I Example 2. (Refinement of lists to arrays) We define abstract programs for indexing and386

updating a list:387

388

lget xs i ≡ assert (i<|xs|); return xs!i lset xs i x ≡ assert (i<|xs|); return xs[i:=x]389
390

These programs assert that the index is in bounds, and then return the accessed element391

(xs!i) or the updated list (xs[i:=x]) respectively. The following assertion links a pointer to a392

list of elements stored at the pointed-to location:393

394

arrA xs p = range {0..<|xs|} (λi. xs!i) p395
396

That is, for every i < |xs|, p+ i points to the ith element of xs. On arrays, indexing and397

updating of arrays is implemented by:398

399

aget p i ≡ l l ofs ptr p i; ll load p aset p i x ≡ l l ofs ptr p i; ll store x p; return p400
401

And the abstract and concrete programs are linked by the following refinement theorems:402

403

hnr (arrA xs xs† ∗ idxA i i†) (aget xs† i†) (arrA xs xs† ∗ idxA i i†) idA (λ . True) (lget xs i)404

hnr (arrA xs xs† ∗ idxA i i†) (aset xs† i† x) (idxA i i†) arrA (λr. r=xs†) (lset xs i x)405
406

That is, if the list xs is refined by array xs†, and the natural number i is refined by the407

fixed-width2 word i† (idxA i i†), the aget operation will return the same result as the lget408

2 We use Isabelle’s word library here, which encodes the actual width as a type variable, such that our
functions work with any bit width. For code generation, we will fix the width to 64 bit.

ITP 2022

12:10 Refinement of Parallel Algorithms down to LLVM

operation (idA). The resulting memory will still contain the original array. Note that there409

is no explicit precondition that the array access is in bounds, as this follows already from the410

assertion in the abstract lget operation. The aset operation will return a pointer to an array411

that refines the updated list returned by lset. As the array is updated in place, the original412

refinement of the array is no longer valid. Moreover, the returned pointer r will be the same413

as the argument pointer xs†. This information is important for refining to parallel programs414

on disjoint parts of an array (cf. Section 4.3).415

Given refinement assertions for the parameters, and hnr-rules for all operations in a416

program, the Sepref tool automatically synthesizes an LLVM program from an abstract neM417

program. The tool tries to automatically discharge additional proof obligations, typically418

arising from translating arithmetic operations from unbounded numbers to fixed width419

numbers. Where automatic proof fails, the user has to add assertions to the abstract program420

to help the proof. The main difference of our tool wrt. the existing Sepref tool [26] is the421

additional condition (CP) on the concrete result, which is used to track pointer equalities.422

We have added a heuristics to automatically synthesize and discharge these equalities.423

4.3 Array Splitting424

An important concept for parallel programs is to concurrently operate on disjoint parts of425

the memory, e.g., different slices of the same array. However, abstractly, arrays are just lists.426

They are updated by returning a new list, and there is no way to express that the new list is427

stored at the same address as the old list. Nevertheless, in order to refine a program that428

updates two disjoint slices of a list to one that updates disjoint parts of the array in place,429

we need to know that the result is stored in the same array as the input. This is handled by430

the CP argument to hnr. To indicate that operations shall be refined to disjoint parts of the431

same array, we introduce the combinator with_split for abstract programs:432

433

with_split i xs f ≡434

assert (i < |xs|);435

(xs1,xs2) ← f (take i xs) (drop i xs);436

assert (|xs1| = i ∧ |xs2| = |xs| − i);437

return (xs1@xs2)438
439

Abstractly, this is an annotation that is inlined when proving the abstract program correct.440

However, Sepref will translate it to the concrete combinator awith split:441

442

awith split i xs† f† ≡ xs†2 ← l l ofs ptr xs† i; f† xs† xs†2; return xs†443

444

hnr (arrA xs1 xs†1 ∗ arrA xs2 xs†2) (f† xs†1 xs†2) �445

(arrA × arrA) (λ(xs†1
′,xs†2

′). xs†1
′=xs†1 ∧ xs†2

′ = xs†2)446

(f xs1 xs2)447

=⇒448

hnr (arrA xs xs† ∗ idxA i i†) (awith split i† xs† f†)449

(idxA i i†) (λxs xs†. arrA xs xs†) (λxs†
′. xs†

′=xs†)450

(with_split i xs f)451
452

The refinement of the function f to f† requires an additional proof that the returned pointers453

are equal to the argument pointers (xs†1
′=xs†1 ∧ xs†2

′ = xs†2). Sepref tries to prove that454

automatically, using a simple heuristics.455

Peter Lammich 12:11

4.4 Refinement to Parallel Execution456

The purely functional abstract programs have no notion of parallel execution. To indicate457

that refinement to parallel execution is desired, we define an abstract annotation npar:458

459

npar f g a b ≡ x ← f a; y ← g b; return (x,y)460

461

hnr Ax (f† x†) Ax′ Rx CP1 (f x) ∧ hnr Ay (g† y†) Ay′ Ry CP2 (g y)462

=⇒463

hnr (Ax ∗ Ay) (l lc par f† g† x† y†) (Ax′ ∗ Ay′) (Rx × Ry)464

(λ(x′
†,y†

′). CP1 x′
† ∧ CP2 y′

†) (npar f g x y)465
466

This rule can be used to automatically parallelize any (independent) abstract computations.467

For convenience, we also define nseq. Abstractly, it’s the same as npar, but Sepref translates468

it to sequential execution.469

5 A Parallel Sorting Algorithm470

To test the usability of our framework, we verify a parallel sorting algorithm. We start with471

the abstract specification of an algorithm that sorts a list:472

473

sort spec xs = spec xs′. mset xs′=mset xs ∧ sorted xs474
475

That is, we return a sorted permutation of the original list. Note that this is a standard476

specification of sorting in Isabelle. Reusing the existing development of an abstract introsort477

algorithm [27], we easily prove with a few refinement steps that the following abstract478

algorithm implements sort spec:479

480

1 psort xs n ≡ assert n=|xs|; if n≤1 then return xs else psort aux xs n (log2 n ∗ 2)481

2482

3 psort aux xs n d ≡483

4 assert n=|xs|484

5 if d=0 ∨ n<100000 then sort spec xs485

6 else486

7 (xs,m) ← partition spec xs;487

8 let bad = m<n div 8 ∨ (n−m < n div 8)488

9 (,xs) ← with_split m xs (λxs1 xs2.489

10 if bad then nseq psort aux psort aux (xs1,m,d−1) (xs2,n−m,d−1)490

11 else npar psort aux psort aux (xs1,m,d−1) (xs2,n−m,d−1)491

12);492

13 return xs493

14494

15 lemma psort xs |xs| ≤ sort spec xs495
496

This algorithm is derived from the well-known quicksort and introsort algorithms [32]: like497

quicksort, it partitions the list (line 7), and then recursively sorts the partitions in parallel498

(l. 11). Like introsort, when the recursion gets too deep, or the list too short, we fall back to499

some (not yet specified) sequential sorting algorithm (l. 5). Similarly, when the partitioning is500

very unbalanced (l. 8), we sort the partitions sequentially (l. 10). These optimizations aim at501

not spawning threads for small sorting tasks, where the overhead of thread creation outweighs502

the advantages of parallel execution. A more technical aspect is the extra parameter n that503

ITP 2022

12:12 Refinement of Parallel Algorithms down to LLVM

we introduced for the list length. Thus, we can refine the list to just a pointer to an array,504

and still access its length3.505

5.1 Implementation and Correctness Theorem506

Next, we have to provide implementations for the fallback sort spec, and for partition spec.507

These implementations must be proved to be in-place, i.e., return a pointer to the same array.508

It was straightforward to amend our existing formalization of pdqsort [27] with the in-place509

proofs: once we had amended the refinement statements, and bug-fixed the pointer equality510

proving heuristics that we added to Sepref, the proofs were automatic.511

Given the implementations of sort spec and partition spec, the Sepref tool generates an512

LLVM program psort† from the abstract psort, and proves a corresponding refinement lemma:513

514

hnr (arrA xs xs† ∗ idxA n n†) (psort† xs† n†) (idxA n n†) arrA (λr. r = xs†) (psort xs n)515
516

Combining this with the correctness lemma of the abstract psort algorithm, and unfolding517

the definition of hnr, we prove the following Hoare-triple for our final implementation:518

519

ht (arrA xs xs† ∗ idxA n n† ∗ n = |xs|)520

(psort† xs† n†)521

(λr. r=xs† ∗ ∃ xs′. arrA xs′ xs† ∗ sorted xs′ ∗ mset xs′ = mset xs)522
523

That is, for a pointer xs† to an array, whose contents are described by list xs (arrA), and a524

fixed-size word n† representing the natural number n (idxA), which must be the number of525

elements in the list xs, our sorting algorithm returns the original pointer xs†, and the array526

contents are now xs′, which is sorted and a permutation of xs. Note that this statement uses527

our semantically defined Hoare triples (cf. Section 3.2). In particular, its correctness does528

not depend on the refinement steps, the Sepref tool, or the VCG.529

5.2 A Sampling Partitioner530

While we could simply re-use the existing partitioning algorithm from the pdqsort formaliza-531

tion, which uses a pseudomedian of nine pivot selection, we observe that the quality of the532

pivot is particularly important for a balanced parallelization. Moreover, the partitioning in533

the psort aux procedure is only done for arrays above a quite big size threshold. Thus, we534

can invest a little more work to find a good pivot, which is still negligible compared to the535

cost of sorting the resulting partitions. We choose a sampling approach, using the median of536

64 equidistant samples as pivot. The highly optimized partitioning algorithms that we use537

swap the pivot to the front of the partition, such that we need to determine its index, rather538

than just its value. We simply use quicksort to find the median4:539

540

sample xs ≡ is ← equidist |xs| 64; is ← sort wrt (λi j. xs!i < xs!j) is; return (is!32)541
542

Proving that this algorithm finds a valid pivot index is straightforward. More challenging is to543

refine it to purely imperative LLVM code, which does not support closures like λi j. xs!i < xs!j.544

We resolve such closures over the comparison function manually: using Isabelle’s locale545

mechanism [19], we parametrize over the comparison function. Moreover, we thread through546

an extra parameter for the data captured by the closure:547

3 Alternatively, we could refine a list to a pair of array pointer and length.
4 We leave verification of efficient median algorithms, e.g., quickselect, to future work. Note that the

overhead of sorting 64 elements is negligible compared to the large partition that has to be sorted.

Peter Lammich 12:13

548

locale pcmp =549

fixes lt :: ′p ⇒ ′e ⇒ ′e ⇒ bool and lt† :: ′p† ⇒ ′e† ⇒ ′e† ⇒ bool550

and parA :: ′p ⇒ ′p† ⇒ assn and elemA :: ′e ⇒ ′e† ⇒ assn551

assumes ∀p. weak ordering (lt p)552

assumes hnr (parA p pi ∗ elemA a ai ∗ elemA b bi) (lt† pi ai bi)553

(parA p pi ∗ elemA a ai ∗ elemA b bi) (boolA) (λ . True) (lt p a b)554
555

This defines a context in which we have an abstract compare function lt for the abstract556

elements of type ′e. It takes an extra parameter of type ′p (e.g. the list xs), and forms a557

weak ordering5. Note that the strict compare function lt also induces a non-strict version558

le p a b ≡ ¬lt p b a. Moreover, we have a concrete implementation lt† of the compare559

function, wrt. the refinement assertions parA for the parameter and elemA for the elements.560

Our sorting algorithm is developed and verified in the context of this locale (to avoid561

confusion, our presentation has, up to now, just used <, ≤, and sorted instead of lt p, le p,562

and sorted wrt (le p)). To get a sorting algorithm for an actual compare function, we have563

to instantiate the locale, providing an abstract and concrete compare function, along with a564

proof that the abstract function is a weak ordering, and the concrete function refines the565

abstract one. For our example of sorting indexes into an array, where the array elements are,566

themselves, compared by a parametrized function lt, we get:567

568

interpretation idx: pcmp lt idx lt idx† (parA × arrA) idxA 〈proof〉569

570

lt idx (p,xs) i j ≡ lt p (xs!i) (xs!j)571

lt idx† (p†,xs†) i† j† ≡ x†←aget xs† i†; y†←aget xs† j†; lt† p† x† y†572
573

this yields sorting algorithms for sorting indexes, taking an extra parameter for the array to574

index into. For our sampling application, we use idx.introsort xs.575

5.3 Code Generation576

Finally, we instantiate the sorting algorithms to sort unsigned integers and strings:577

578

interpretation unat: pcmp (λ . <) (λ . ll icmp ult) unat64
A 〈proof〉579

interpretation str: pcmp (λ . <) (λ . strcmp) str64
A 〈proof〉580

581

This yields implementations unat.psort† and str.psort†, and automatically proves instantiated582

versions of the correctness theorems.583

In a last step, we use our code generator to generate actual LLVM text, as well as a C584

header file with the signatures of the generated functions6:585

586

export llvm587

unat.psort† is uint64 t∗ psort(uint64 t∗, int64 t)588

str.psort† is l lstring∗ str psort(l lstring∗, int64 t)589

defines typedef struct {int64 t size; struct {int64 t capacity; char ∗data;};} l lstring;590

file psort.ll591
592

5 A weak ordering is induced by a mapping of the elements into a total ordering. It is the standard
prerequisite for sorting algorithms in C++ [17].

6 For technical reasons, we represent the array size as non-negative signed integer, thus the C signature
uses int64 t. Moreover, we use a string implementation based on dynamic arrays, rather than C’s zero
terminated strings.

ITP 2022

12:14 Refinement of Parallel Algorithms down to LLVM

This checks that the specified C signatures are compatible with the actual types, and then593

generates psort.ll and psort.h, which can be used in a standard C/C++ toolchain.594

5.4 Benchmarks595

We have benchmarked our verified sorting algorithm against a direct implementation of the596

same algorithm in C++. The result was that both implementations have the same runtime,597

up to some minor noise. This indicates that there is no systemic slowdown: algorithms598

verified with our framework run as fast as their unverified counterparts implemented in C++.599

We also benchmarked against the state-of-the-art implementations std::sort with execution600

policy par unseq from the GNU C++ standard library [12], and sample sort from the Boost601

C++ libraries [4, 5]. We have benchmarked the algorithm on two different machines, and602

various input distributions. The results are shown in Figure 2. While our verified algorithm603

is clearly competitive for integer sorting on the less parallel laptop machine, it’s slightly less604

efficient for sorting strings on the highly parallel server machine. Nevertheless, we believe605

that our verified implementation is already useful in practice, and leave further optimizations606

to future work.607

Finally, we measured the speedup that the implementations achieve for a certain number608

of cores. The results are displayed in Figure 3. While the speedup on the moderately parallel609

laptop is comparable to the one of the C++ standard library, our implementation achieves610

lower speedups than the state-of-the-art on the highly parallel server. Again, we leave further611

optimizations to future work.612

6 Conclusions613

We have presented a stepwise refinement approach to verify total correctness of efficient614

parallel algorithms. Our approach targets LLVM as back end, and there is no systemic615

efficiency loss in our approach when compared to unverified algorithms implemented in C++.616

The trusted code base of our approach is relatively small: apart from Isabelle’s inference617

kernel, it contains our shallow embedding of a small fragment of the LLVM semantics, and618

the code generator. All other tools that we used, e.g., our Hoare logic, Sepref tool, and619

Refinement Framework for abstract programs, ultimately prove a correctness theorem that620

only depends on our shallowly embedded semantics.621

As a case study, we have implemented a parallel sorting algorithm. It uses an existing622

verified sequential pdqsort algorithm as a building block, and is competitive with state-of-623

the-art parallel sorting algorithms, at least on moderately parallel hardware.624

The main idea of our parallel extension is to shallowly embed the semantics of a parallel625

combinator into a sequential semantics, by making the semantics report the accessed memory626

locations, and fail if there is a potential data race. We only needed to change the lower627

levels of our existing framework for sequential LLVM [26]. Higher-level tools like the VCG628

and Sepref remained largely unchanged and backwards compatible. This greatly simplified629

reusing of existing verification projects, like the sequential pdqsort algorithm [27].630

6.1 Related Work631

While there is extensive work on parallel sorting algorithm (e.g. [9, 1]), there seems to be632

almost no work on their formal verification. The only work we are aware of is a distributed633

merge sort algorithm [16], for which ”no effort has been made to make it efficient”[16, Sec. 2],634

nor any executable code has been generated or benchmarked. Another verification [34] uses635

Peter Lammich 12:15

0

500

1,000

1,500
Laptop, uint64

0

500

1,000 Server, uint64

500

1,000 Laptop, string

re
v-s

ort
ed-e

nd-1
0

re
v-s

ort
ed-e

nd-1

so
rt

ed-e
nd-.1

alm
ost

-s
ort

ed-5
0

ra
ndom

-b
oole

an

org
an-p

ip
e

so
rt

ed-e
nd-1

0
equal

re
v-s

ort
ed-m

id
dle

-.1

re
v-s

ort
ed

so
rt

ed-m
id

dle
-1

re
v-s

ort
ed-m

id
dle

-1
0

ra
ndom

alm
ost

-s
ort

ed-.1

so
rt

ed

re
v-s

ort
ed-m

id
dle

-1

so
rt

ed-m
id

dle
-.1

alm
ost

-s
ort

ed-1
0

alm
ost

-s
ort

ed-1

so
rt

ed-m
id

dle
-1

0

re
v-s

ort
ed-e

nd-.1

so
rt

ed-e
nd-1

ra
ndom

-d
up-1

0

200

400

600

800

1,000
Server, string verified

std::sort(par-unseq)
sample sort

Figure 2 Runtimes in milliseconds for sorting various distributions of unsigned 64 bit integers
and strings with our verified parallel sorting algorithm, C++’s standard parallel sorting algorithm,
and Boost’s parallel sample sort algorithm. The experiments were performed on a server machine
with 22 AMD Opteron 6176 cores and 128GiB of RAM, and a laptop with a 6 core (12 threads)
i7-10750H CPU and 32GiB of RAM.

ITP 2022

12:16 Refinement of Parallel Algorithms down to LLVM

0 2 4 6 8 10 12

1

2

3

4

5 Laptop

verified
sample sort
std::sort(par-unseq)

0 5 10 15 20

2

4

6

8

10 Server

verified
sample sort
std::sort(par-unseq)

Figure 3 Speedup of the various implementations, for sorting unsigned 64 bit integers with a
random distribution, on a server with 22 AMD Opteron 6176 cores and 128GiB of RAM, and a
laptop with a 6 core (12 threads) i7-10750H CPU and 32GiB of RAM. The x axis ranges over the
number of cores, and the y-axis gives the speedup wrt. the same implementation run on only one
core. The thin black lines indicate linear speedup.

the VerCors deductive verifier to prove the permutation property (mset xs′ = mset xs) of636

odd-even transposition sort [13], but neither the sortedness property nor termination.637

Concurrent separation logic is used by many verification tools such as VerCors [3], and also638

formalized in proof assistants, for example in the VST [37] and IRIS [18] projects for Coq [2].639

These formalizations contain elaborate concepts to reason about communication between640

threads via shared memory, and are typically used to verify partial correctness of subtle641

concurrent algorithms (e.g. [31]). Reasoning about total correctness is more complicated642

in the step-indexed separation logic provided by IRIS, and currently only supported for643

sequential programs [35]. Our approach is less expressive, but naturally supports total644

correctness, and is already sufficient for many practically relevant parallel algorithms like645

sorting, matrix-multiplication, or parallel algorithms from the C++ STL.646

6.2 Future Work647

An obvious next step is to implement a fractional separation logic [6], to reason about parallel648

threads that share read-only memory. While our semantics already supports shared read-only649

memory, our separation logic does not. We believe that implementing a fractional separation650

logic will be straightforward, and mainly pose technical issues for automatic frame inference.651

Another obvious next step is to verify a state-of-the-art parallel sorting algorithm, like652

Boost’s sample sort. Like our current algorithm, sample sort does not require advanced653

synchronization concepts, and can be implemented only with a parallel combinator.654

Finally, the Sepref framework has recently been extended to reason about complexity of655

(sequential) LLVM programs [14, 15]. This line of work could be combined with our parallel656

extension, to verify the complexity (e.g. work and span) of parallel algorithms.657

Extending our approach towards more advanced synchronization like locks or atomic658

operations may be possible: instead of accessed memory addresses, a thread could report a659

set of possible traces, which are checked for race-freedom and then combined.660

Finally, our framework currently targets multicore CPUs. Another important architecture661

are general purpose GPUs. As LLVM is also available for GPUs, porting our framework to662

Peter Lammich 12:17

this architecture should be possible. We even expect that barrier synchronization, which is663

important in the GPU context, can be integrated into our approach.664

ITP 2022

12:18 Refinement of Parallel Algorithms down to LLVM

References665

1 Mikhail Asiatici, Damian Maiorano, and Paolo Ienne. How many cpu cores is an fpga worth?666

lessons learned from accelerating string sorting on a cpu-fpga system. Journal of Signal667

Processing Systems, pages 1–13, 2021.668

2 Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Development:669

Coq’Art The Calculus of Inductive Constructions. Springer Publishing Company, Incorporated,670

1st edition, 2010.671

3 Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The vercors tool set:672

Verification of parallel and concurrent software. In Nadia Polikarpova and Steve Schneider,673

editors, Integrated Formal Methods, pages 102–110, Cham, 2017. Springer International674

Publishing.675

4 Boost C++ libraries. https://www.boost.org/.676

5 Boost C++ libraries sorting algorithms. https://www.boost.org/doc/libs/1_77_0/libs/677

sort/doc/html/index.html.678

6 Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission679

accounting in separation logic. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium680

on Principles of Programming Languages, POPL ’05, pages 259–270, New York, NY, USA,681

2005. ACM. URL: http://doi.acm.org/10.1145/1040305.1040327, doi:10.1145/1040305.682

1040327.683

7 Julian Brunner and Peter Lammich. Formal verification of an executable LTL model684

checker with partial order reduction. J. Autom. Reasoning, 60(1):3–21, 2018. doi:685

10.1007/s10817-017-9418-4.686

8 C. Calcagno, P.W. O’Hearn, and Hongseok Yang. Local action and abstract separation logic.687

In LICS 2007, pages 366–378, July 2007.688

9 Jatin Chhugani, Anthony D Nguyen, Victor W Lee, William Macy, Mostafa Hagog, Yen-Kuang689

Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey. Efficient implementation of sorting690

on multi-core simd cpu architecture. Proceedings of the VLDB Endowment, 1(2):1313–1324,691

2008.692

10 Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and693

Jan-Georg Smaus. A fully verified executable LTL model checker. In CAV, volume 8044 of694

LNCS, pages 463–478. Springer, 2013.695

11 Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. A verified SAT solver with696

watched literals using Imperative HOL. In Proc. of CPP, pages 158–171, 2018.697

12 The GNU C++ library 3.4.28. https://gcc.gnu.org/onlinedocs/libstdc++/.698

13 A. Nico Habermann. Parallel neighbor-sort, Jun 1972. URL: https://kilthub.cmu.699

edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_700

induction_principle_/6608258/1, doi:10.1184/R1/6608258.v1.701

14 Maximilian P. L. Haslbeck and Peter Lammich. For a few dollars more - verified fine-grained702

algorithm analysis down to LLVM. TOPLAS, S.I. ESOP’21. to appear.703

15 Maximilian P. L. Haslbeck and Peter Lammich. For a few dollars more - verified fine-grained704

algorithm analysis down to LLVM. In Nobuko Yoshida, editor, Programming Languages705

and Systems - 30th European Symposium on Programming, ESOP 2021, Held as Part of the706

European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg707

City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture Notes in708

Computer Science, pages 292–319. Springer, 2021. doi:10.1007/978-3-030-72019-3_11.709

16 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: Session-type710

based reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL), dec 2019. doi:711

10.1145/3371074.712

17 Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley713

Professional, 2nd edition, 2012.714

https://www.boost.org/
https://www.boost.org/doc/libs/1_77_0/libs/sort/doc/html/index.html
https://www.boost.org/doc/libs/1_77_0/libs/sort/doc/html/index.html
https://www.boost.org/doc/libs/1_77_0/libs/sort/doc/html/index.html
http://doi.acm.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4
https://gcc.gnu.org/onlinedocs/libstdc++/
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://doi.org/10.1184/R1/6608258.v1
https://doi.org/10.1007/978-3-030-72019-3_11
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3371074

Peter Lammich 12:19

18 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek715

Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation716

logic. J. Funct. Program., 28:e20, 2018. doi:10.1017/S0956796818000151.717

19 Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales a sectioning concept718

for isabelle. In Yves Bertot, Gilles Dowek, Laurent Théry, André Hirschowitz, and Christine719

Paulin, editors, Theorem Proving in Higher Order Logics, pages 149–165, Berlin, Heidelberg,720

1999. Springer Berlin Heidelberg.721

20 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised separation algebra. In ITP,722

pages 332–337. Springer, Aug 2012.723

21 Peter Lammich. Automatic data refinement. In ITP, volume 7998 of LNCS, pages 84–99.724

Springer, 2013.725

22 Peter Lammich. Verified efficient implementation of gabow’s strongly connected component726

algorithm. In International Conference on Interactive Theorem Proving, pages 325–340.727

Springer, 2014.728

23 Peter Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of LNCS, pages 253–269.729

Springer, 2015.730

24 Peter Lammich. Efficient verified (UN)SAT certificate checking. In Proc. of CADE. Springer,731

2017.732

25 Peter Lammich. The GRAT tool chain - efficient (UN)SAT certificate checking with formal733

correctness guarantees. In SAT, pages 457–463, 2017.734

26 Peter Lammich. Generating Verified LLVM from Isabelle/HOL. In John Harrison, John735

O’Leary, and Andrew Tolmach, editors, 10th International Conference on Interactive Theorem736

Proving (ITP 2019), volume 141 of Leibniz International Proceedings in Informatics (LIPIcs),737

pages 22:1–22:19, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.738

URL: http://drops.dagstuhl.de/opus/volltexte/2019/11077, doi:10.4230/LIPIcs.ITP.739

2019.22.740

27 Peter Lammich. Efficient verified implementation of introsort and pdqsort. In Nicolas741

Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th International742

Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume743

12167 of Lecture Notes in Computer Science, pages 307–323. Springer, 2020. doi:10.1007/744

978-3-030-51054-1_18.745

28 Peter Lammich and S. Reza Sefidgar. Formalizing the Edmonds-Karp algorithm. In Proc. of746

ITP, pages 219–234, 2016.747

29 Peter Lammich and S. Reza Sefidgar. Formalizing network flow algorithms: A refine-748

ment approach in Isabelle/HOL. J. Autom. Reasoning, 62(2):261–280, 2019. doi:10.1007/749

s10817-017-9442-4.750

30 Peter Lammich and Thomas Tuerk. Applying data refinement for monadic programs to751

Hopcroft’s algorithm. In Lennart Beringer and Amy P. Felty, editors, ITP 2012, volume 7406752

of LNCS, pages 166–182. Springer, 2012.753

31 Glen Mével and Jacques-Henri Jourdan. Formal verification of a concurrent bounded queue in754

a weak memory model. Proc. ACM Program. Lang., 5(ICFP), August 2021. doi:10.1145/755

3473571.756

32 DAVID R. MUSSER. Introspective sorting and selection algorithms. Software: Practice757

and Experience, 27(8):983–993, 1997. doi:10.1002/(SICI)1097-024X(199708)27:8<983::758

AID-SPE117>3.0.CO;2-\#.759

33 Peter W. O’Hearn. Resources, concurrency and local reasoning. In Philippa Gardner and760

Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, pages 49–67, Berlin, Heidel-761

berg, 2004. Springer Berlin Heidelberg.762

34 Mohsen Safari and Marieke Huisman. A generic approach to the verification of the permutation763

property of sequential and parallel swap-based sorting algorithms. In International Conference764

on Integrated Formal Methods, pages 257–275. Springer, 2020.765

ITP 2022

https://doi.org/10.1017/S0956796818000151
http://drops.dagstuhl.de/opus/volltexte/2019/11077
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3473571
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-

12:20 Refinement of Parallel Algorithms down to LLVM

35 Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek766

Dreyer, and Lars Birkedal. Transfinite iris: Resolving an existential dilemma of step-indexed767

separation logic. In Proceedings of the 42nd ACM SIGPLAN International Conference on768

Programming Language Design and Implementation, pages 80–95, 2021.769

36 Intel oneapi threading building blocks. https://software.intel.com/en-us/intel-tbb.770

37 Verified software toolchain project web page. https://vst.cs.princeton.edu/.771

38 Simon Wimmer and Peter Lammich. Verified model checking of timed automata. In TACAS772

2018, pages 61–78, 2018.773

https://software.intel.com/en-us/intel-tbb
https://vst.cs.princeton.edu/

	1 Introduction
	1.1 Overview

	2 A Back End for LLVM with Parallel Execution
	2.1 State-Nondeterminism-Error Monad with Access Reports
	2.2 Memory Model
	2.3 Access Reports
	2.4 LLVM Instructions

	3 Parallel Separation Logic
	3.1 Separation Algebra
	3.2 Weakest Preconditions and Hoare Triples
	3.3 Verification Condition Generator
	3.4 Hoare-Triples for Instructions

	4 Refinement for Parallel Programs
	4.1 Abstract Programs
	4.2 The Sepref Tool
	4.3 Array Splitting
	4.4 Refinement to Parallel Execution

	5 A Parallel Sorting Algorithm
	5.1 Implementation and Correctness Theorem
	5.2 A Sampling Partitioner
	5.3 Code Generation
	5.4 Benchmarks

	6 Conclusions
	6.1 Related Work
	6.2 Future Work

